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-Common respiratory illness caused by an influenza 
virus

-Each year in U.S.:

- 5 – 20% of the population gets sick

- 200,000 individuals hospitalized

- 36,000 die (elderly and chronically ill)

-1918 pandemic

- 50-100 million die (all ages)

www.wagt.com/news/health/922332.html
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Problems with epidemic data:

1.Many do not visit a doctor when sick

2.Many doctors do not report cases

3.Wrong diagnoses

- secondary infections

- were already chronically ill

4. Data that are available are hard to find!
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Things to know before making a model:

1. details concerning causal agent

2. evolution

3. transmission

- contact networks
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Reproduced from Webster et 
al’s Evolution and Ecology of 
Influenza A Viruses

Influenza A virion consists of:

-Host-derived lipid bilayer

- protein matrix

- 8 single-stranded RNA segments

- polymerases

- hemagglutinin (HA) 

- neuraminidase (NA)

1. The causal agent

Reproduced from Medical Microbiology 4th edition Fig. 56-2

1. The causal agent
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2. Evolution

1.Antigenic drift

- polymerases lack proofreading capability 
= mutations

- cause of seasonal outbreaks

AGGUAAGGCGAAGCUAAGGCGA

- 30% difference in amino acid sequence of HA or

NA = new subtype

- 16 different HA (H1, H2..), 9 different NA (N1, N2..)

2. Antigenic shift

- gene segments integrated into progeny               
virions relatively randomly

- occurs when one is infected with 2 different 
parent viruses at once

2. Evolution

- often cause of pandemics

H1N1 H3N2

Host cell

H1N2
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2. Transmission

-Virus spreads from one host to another 
in airborne respiratory droplets

-latency period = 1-3 days

-Infectious period = up to 6 days

- Symptoms appear 1-4 days after 
infection

- Can spread disease when you don’t 
know you have it!

www.coolquiz.com

2. Transmission

Ro = average # of secondary infections caused 
by a primary infection in a completely 
susceptible population

Ro > 1 but  < 3

Christina Mills et al, 2004, Nature
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2. Transmission

Regular k-circulant

High clustering coefficient

High average path length

Random

Low clustering coefficient

Low average path length
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swnP = probability each host’s edge is broken 
and rewired to a randomly chosen host from the 
population

swnP = 0.0 swnP = 0.02

2. Transmission

Small-World Network

Watts and Strogatz, 1998, Nature
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1. Differential Equation Models = SIR Models

S I Rβ ν

b

d d dα

dS/dt = b (S + I + R) – dS – ßSI 
dI/dt = ßSI – (αI + dI + νI)
dR/dt = νI – dR

β =  0.0006 b = 0

ν =  0.2 d = 0

α = 0

www.cdc.gov/flu
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Ro = ßS / ν

Ro > 1   epidemic will occur

Ro < 1   epidemic will not occur

Predicting whether an epidemic will occur:

What else can we do with them?

-Analyze data from real outbreaks

- Incorporate Evolution

-Vaccinate
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S I Rβ ν

b

d d dα

dS/dt = b (S + I + R) – dS – ßSI - λS
dI/dt = ßSI – (αI + dI + νI)
dR/dt = νI – dR + λS

Vaccination

S I Rβ ν

b

d d dα

dS/dt = b (S + I + R) – dS – ßSI - λS
dI/dt = ßSI – (αI + dI + νI)
dR/dt = νI – dR + λS

λ

Vaccination
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2. Agent-based Models

Our Small-World Network 
Model:  

Parameters

k

swnP

NCR

latency period

infectious period (d)
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k = 4                lat period = 1

swnP = 0.05    inf period = 3

NCR =0.5

( SIR model)
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Ro = k * (1 – (1 – NCR)d)

Predicting whether an epidemic will occur:

Ex: 

Ro = 2   when:

k = 4

NCR = ~ 0.2

d = 3

k 4

Ro 2

Latency period             1

Infectious period           3

swnP 0.0, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0

Population size          1000, 10000, 100000

Vaccination effort       0 – 30%
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1. Vaccinating Random Nodes
2. Vaccinating Hubs (nodes with the highest 
degree)
3. Vaccinating Nodes with Lowest Clustering 
Coefficient
4. Vaccinating Nodes with Highest Clustering 
Coefficient
5. Vaccinating Nodes Containing Cross-Cut Edges

Vaccination Strategies:
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P < 0.001

P < 0.001
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CDC’s 8 priority groups

(all of equal importance)

www.cdc.gov (2004)

Conclusions: 

1. Mathematical models have increased our 
understanding of influenza and allow us to 
predict/prepare.

2.SIR models are very simple and a vast amount can be 
learned from them.

3. Agent-based models are both more realistic and more 
complex.  Still, they allow you to do things that SIR 
models do not (targeted vaccinations!).
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