The expected number of components in subgraphs of a small world network derived from a circulant.

Jacqueline Dresch
and

Niels Hansen
Undergraduate Biomathematical Research Career Initiative Program*

Faculty Mentors
Gregg Hartivigsen (Biology)
Chris Leary (Mathematics)
Tony Macula (Mathematics)
Wendy Pogozelski (Biochemistry)

*Supported by National Science Foundation-UMB Project 0436298

Circulant:

Definition: A circulant graph is a graph of n vertices in which the i th vertex is adjacent to the $(i-k)$ th and $(i+k)$ th vertices for some k. (This k is referred to as the regularity parameter.)

Adjacency Matrix:
The adjacency matrix for such a graph has 0's on the diagonals and k 1's on each side of these zeros, in each row. In row j, if there are not k places to the left of the diagonal, we place 1's in the last $k-j$ places in row j. Likewise, if there are not k places to the right of the diagonal, we place 1's in the first $k-j$ places in row j.

Example of a $2 k$ regular circulant with $k=2$:

Graph:
Matrix:

$\left[\begin{array}{llllllllll}0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0\end{array}\right]$

Induced Subgraph:

Definition: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, with $\mathrm{V}=$ set of vertices and $\mathrm{E}=$ set of edges. Let W be a subset of V and F be a subset of E.

The graph (W, F) is an Induced Subgraph of G if $\mathrm{F}=$ the intersection of E and all 2 element subsets of W.

Components:

Definition: A component of a graph is a maximal connected subgraph.

Examples of Subgraphs:

Subgraph of 1 Component

Original Circulant

Subgraph of 2 Components
3.

Fundamental Question \#1:

What's the Expected Number of Components in an
Induced Subgraph of a Circulant???

First, lets reduce the problem.....
We can view the vertices of a subgraph as the original vertices being renumbered by 0 s or 1 s .

We replace a vertex with 1 if it is in the subgraph, and 0 if it is not in the subgraph.

First, lets reduce the problem.....

We can view the vertices of a subgraph as the original vertices being labeled by 0s or 1s.

We label a vertex with 1 if it is in the subgraph, and 0 if it is not in the subgraph.

Example:

First, lets reduce the problem.....

We can view the vertices of a subgraph as the original vertices being labeled by 0s or 1s.

We label a vertex with 1 if it is in the subgraph, and 0 if it is not in the subgraph.

Example:

First Component

First, lets reduce the problem.....

We can view the vertices of a subgraph as the original vertices being labeled by 0s or 1s.

We label a vertex with 1 if it is in the subgraph, and 0 if it is not in the subgraph.

Second Component
Example:

First, lets reduce the problem.....

We can view the vertices of a subgraph as the original vertices being labeled by 0s or 1s.

We label a vertex with 1 if it is in the subgraph, and 0 if it is not in the subgraph.

Example:

Third Component

$n=\#$ of vertices in the original circulant $s=\#$ of 1s (\# of vertices in the induced subgraph) $n-s=\#$ of 0 s
$Y_{n, s}=\#$ of components

$X=\#$ of boxes with $\geq k$ objects when $n-s$ objects are uniformly distribute d into s boxes

$$
\begin{aligned}
& X=\sum_{i=1}^{s} X_{i} \quad \text { where } X_{i}=\left\{\begin{array}{l}
0 \text { if box } i \text { has }<k \text { objects } \\
1 \text { if box } i \text { has } \geq k \text { objects }
\end{array}\right. \\
& E(X)=\sum_{i=1}^{s} E\left(X_{i}\right)
\end{aligned}
$$

$$
E\left(X_{i}\right)=E\left(X_{j}\right) \quad \text { for all } i, j
$$

So,

$$
E(X)=s E\left(X_{1}\right)=s P(\text { box } 1 \text { has } \geq k \text { objects })
$$

$n=\#$ of vertices in the original circulant
$s=\#$ of 1s (\# of vertices in the induced subgraph)
$n-s=\#$ of 0 s
$Y_{n, s}=\#$ of components

$X=\#$ of boxes with $\geq k$ objects when $n-s$ objects are uniformly distribute d into s boxes

$$
E(X)=\sum_{i=0}^{\left\lfloor\frac{n-s}{k}\right\rfloor} i P(X=i)=0+\sum_{i=1}^{\left\lfloor\frac{n-s}{k}\right\rfloor} i P(X=i)=\sum_{i=1}^{\left\lfloor\frac{n-s}{k}\right\rfloor} i P(X=i)
$$

$$
P(Y=j)=P(X=j) \quad \text { for } 2 \leq j \leq\left\lfloor\frac{n-s}{k}\right\rfloor
$$

$n=\#$ of vertices in the original circulant
$s=\#$ of 1s (\# of vertices in the induced subgraph)
$n-s=\#$ of 0 s
$Y_{n, s}=\#$ of components

$X=\#$ of boxes with $\geq k$ objects when $n-s$ objects are uniformly distribute d into s boxes

$$
E(X)=\sum_{i=0}^{\left\lfloor\frac{n-s}{k}\right\rfloor} i P(X=i)=0+\sum_{i=1}^{\left\lfloor\frac{n-s}{k}\right\rfloor} i P(X=i)=\sum_{i=1}^{\left\lfloor\frac{n-s}{k}\right\rfloor} i P(X=i)
$$

$$
P(Y=j)=P(X=j) \quad \text { for } 2 \leq j \leq\left\lfloor\frac{n-s}{k}\right\rfloor
$$

$P(Y=j)=P(X=0)+P(X=1) \quad$ for $j=1$
$X=0$
$Y=1$
$X=1$
$\mathrm{Y}=1$
$n=\#$ of vertices in the original circulant $s=\#$ of 1s (\# of vertices in the induced subgraph) $n-s=\#$ of 0 s
$Y_{n, s}=\#$ of components

$X=\#$ of boxes with $\geq k$ objects when $n-s$ objects are uniformly distribute dinto s boxes

$$
E(X)=\sum_{i=0}^{\left\lfloor\frac{n-s}{k}\right\rfloor} i P(X=i)=0+\sum_{i=1}^{\left\lfloor\frac{n-s}{k}\right\rfloor} i P(X=i)=\sum_{i=1}^{\left\lfloor\frac{n-s}{k}\right\rfloor} i P(X=i)
$$

$$
P(Y=j)=P(X=j) \quad \text { for } 2 \leq j \leq\left\lfloor\frac{n-s}{k}\right\rfloor
$$

$$
P(Y=j)=P(X=0)+P(X=1) \quad \text { for } j=1
$$

Therefore...
$n=\#$ of vertices in the original circulant $s=\#$ of 1s (\# of vertices in the induced subgraph) $n-s=\#$ of 0 s
$Y_{n, s}=\#$ of components

$X=\#$ of boxes with $\geq k$ objects when $n-s$ objects are uniformly distribute d into s boxes

$$
\begin{aligned}
E(Y) & =P(X=0)+P(X=1)+\sum_{i=2}^{\left\lfloor\frac{n-s}{k}\right\rfloor} j P(Y=i) \\
& =P(X=0)+P(X=1)+\sum_{i=2}^{k} i P(X=i) \\
& =P(X=0)+E(X) \\
& =P(X=0)+s P(\text { box } 1 \text { has } \geq k \text { objects })
\end{aligned}
$$

$n=\#$ of vertices in the original circulant $s=\#$ of 1s (\# of vertices in the induced subgraph) $n-s=\#$ of 0 s
$Y_{n, s}=\#$ of components

$X=\#$ of boxes with $\geq k$ objects when $n-s$ objects are uniformly distribute d into s boxes

$$
P(X=0)=\frac{\binom{s+n-s-1}{n-s}-\left|\bigcup_{i=1}^{s} A_{i}\right|}{\binom{s+n-s-1}{n-s}}
$$

where $A_{i}=\#$ of ways to put $n-s$ objects into s boxes, such that box i has
$\geq k$ objects
A_{i} is a regular family, so...

$$
\left|\bigcup_{i=1}^{s} A_{i}\right|=\binom{s}{1}\left|A_{1}\right|-\binom{s}{2}\left|A_{1} \cap A_{2}\right|+\binom{s}{3}\left|A_{1} \cap A_{2} \cap A_{3}\right|-\ldots(-1)^{s-1}\binom{s}{s}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{s}\right|
$$

$n=\#$ of vertices in the original circulant $s=\#$ of 1s (\# of vertices in the induced subgraph) $n-s=\#$ of 0 s
$Y_{n, s}=\#$ of components

$X=\#$ of boxes with $\geq k$ objects when $n-s$ objects are uniformly distribute d into s boxes

$$
P(X=0)=\frac{\binom{n-1}{n-s}-\binom{s}{1}\left|A_{1}\right|+\binom{s}{2}\left|A_{1} \cap A_{2}\right|-\binom{s}{3}\left|A_{1} \cap A_{2} \cap A_{3}\right|+\ldots(-1)^{s}\binom{s}{s}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{s}\right|}{\binom{n-1}{n-s}}
$$

$$
E(Y)=\frac{\binom{n-1}{n-s}-\binom{s}{1}\left|A_{1}\right|+\binom{s}{2}\left|A_{1} \cap A_{2}\right|-\binom{s}{3}\left|A_{1} \cap A_{2} \cap A_{3}\right|+\ldots(-1)^{s}\binom{s}{s}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{s}\right|}{\binom{n-1}{n-s}}
$$

$$
+s P \text { (box } 1 \text { has } \geq k \text { objects) }
$$

$n=\#$ of vertices in the original circulant $s=\#$ of 1s (\# of vertices in the induced subgraph) $n-s=\#$ of 0 s
$Y_{n, s}=\#$ of components

$X=\#$ of boxes with $\geq k$ objects when $n-s$ objects are uniformly distribute d into s boxes
$P($ box 1 has $\geq k$ objects $)=\frac{\binom{\mathrm{s}+\mathrm{n}-\mathrm{s}-\mathrm{k}-1}{\mathrm{n}-\mathrm{s}-\mathrm{k}}}{\binom{\mathrm{s}+\mathrm{n}-\mathrm{s}-1}{\mathrm{n}-\mathrm{s}}}=\frac{(n-k-1)!(n-s)!}{(n-1)!(n-s-k)!} \quad$ Therefore,

$$
\begin{aligned}
& E(Y)= \frac{\binom{n-1}{n-s}-\binom{s}{1}\left|A_{1}\right|+\binom{s}{2}\left|A_{1} \cap A_{2}\right|-\binom{s}{3}\left|A_{1} \cap A_{2} \cap A_{3}\right|+\ldots(-1)^{s}\binom{s}{s}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{s}\right|}{\binom{n-1}{n-s}} \\
& \quad+\frac{s(n-k-1)!(n-s)!}{(n-1)!(n-s-k)!}
\end{aligned}
$$

Expected Number of Components for a 2 k regular Circulant with $\mathrm{k}=$

 4:| n / s | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 6.39 | 8.36 | 7.81 | 6.08 | 4.08 | 2.38 | 1.37 | 1.04 | 1.00 |
| 120 | 6.79 | 9.63 | 9.93 | 8.75 | 6.89 | 4.90 | 3.14 | 1.87 | 1.22 |
| 140 | 7.08 | 10.62 | 11.67 | 11.12 | 9.62 | 7.70 | 5.73 | 3.94 | 2.51 |
| 160 | 7.31 | 11.40 | 13.12 | 13.17 | 12.13 | 10.46 | 8.51 | 6.55 | 4.75 |
| 180 | 7.48 | 12.03 | 14.33 | 14.95 | 14.40 | 13.07 | 11.29 | 9.33 | 7.37 |
| 200 | 7.63 | 12.56 | 15.35 | 16.50 | 16.42 | 15.47 | 13.96 | 12.12 | 10.15 |

Cross-Cut Edges

Expected Number of Components for a 2 k regular
 Circulant with $\mathrm{k}=4$ and 1 added Cross-cut Edge:

n / s	10	20	30	40	50	60	70	80	90
100	5.48	7.46	6.94	5.28	3.43	1.99	1.23	1.01	1.00
120	5.86	8.71	9.02	7.87	6.08	4.20	2.63	1.60	1.13
140	6.15	9.68	10.74	10.20	8.74	6.87	4.98	3.34	2.11
160	6.36	10.45	12.18	12.24	11.22	9.58	7.67	5.77	4.08
180	6.53	11.08	13.38	14.01	13.47	12.15	10.40	8.48	6.57
200	6.67	11.60	14.39	15.55	15.47	14.54	13.04	11.22	9.28

