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“The intensive ‘search for holy chaos’ … 
was a failure, because so far we have not 
found any direct analogs of chaotic … 
dynamics in nature.”

Turchin, P. 2003. Complex population 
dynamics.



Perhaps this failure is a matter of scale
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Population growth under controlled conditions
often follows the logistic model







Ricklefs, Economy of Nature, 2000. Figure 13.16
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What is chaos in population dynamics?

Signature of chaos = sensitivity to
initial conditions

Assessed with:

1. Pattern in Nt+1 vs. Nt
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What is chaos in population dynamics?

Signature of chaos = sensitivity to
initial conditions

Assessed with:

1. Pattern in Nt+1 vs. Nt
2. Lyapunov exponent (λ)

chaos when λ > 0



Larch Bud Moth (Large-Scale Sampling)

Turchin 2003. Complex Population Dynamics
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Lemmings (Small-Scale Sampling)



Turchin 2003. Complex Population Dynamics

Lemmings (Small-Scale Sampling)



Data courtesy of Bryan Grenfell

Bi-Weekly Periods from 
1944-1966
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Humans With Measles (Small-Scale Sampling)
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Example: xt+1 = axt(1-xt)a = 3.77695



Example:

X t
+1Xt+1

xt+1 = axt(1-xt)a = 3.77695



Example: xt+1 = axt(1-xt)a = 3.77695
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The 7-Step Approach

1. Collect 20K values
of a that yield chaos.

2. Collect another 20K
values of a that do 
not yield chaos but are in the same
range (3.57 ≤ a < 4.00) (“control”).

3. Run many simulations (10K) with 
slightly different initial conditions
for each of the 40K values of a.



4. Run the simulations
for 5000 time steps
to avoid “transient
effects.”

The 7-Step Approach
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4. Run the simulations
for 5000 time steps
to avoid “transient
effects.”

5. Average all 10K sims with the same 
value of a for the last 5000 time steps.

6. Calculate the Lyapunov exponent (λ) 
for these average time series.

7. Plot λ against all values of a.

The 7-Step Approach



Single Populations: a is “chaotic”

λ for populations for time steps 5K -> 10K
λ



Single Populations: a is not “chaotic”

λ
λ for populations for time steps 5K -> 10K



What do the average dynamics look like?

for all values of a
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Conclusions (3)
1. Chaos has been detected occasionally in 

relatively big species (lemmings, grouse, 
and measles in humans) and far less
convincingly in small-bodies species 
(e.g., insects). 

Bi-Weekly Periods from 
1944-1966
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Conclusions (3)
2. If our sampling is large-scale (capturing

many small, relatively independent
subpopulations, the average of these
is occasionally chaotic, but is more likely
non-chaotic or “quasi-chaotic.”
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Conclusions (3)
3. This analysis suggests that the failure 

to find “holy chaos,” especially in rapidly
growing insect populations, may be an issue 
of scale (biologists sampling efforts may be
averaging interesting smaller-scale dynamics).
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