Ensembles of Chaotic Populations Yield More Than Just Chaos

Gregg Hartvigsen SUNY Geneseo

"The intensive 'search for holy chaos' ... was a failure, because so far we have not found any direct analogs of chaotic ... dynamics in nature."

Turchin, P. 2003. Complex population dynamics.

Perhaps this failure is a matter of scale

Population growth under controlled conditions often follows the logistic model

Fig. 3 (continued). (E) The same information as (D) as presented in Hutchinson, 1978. Note that in no cases in (D) or (E) does the logistic fit the final data points given better than a linear extrapolation. (With permission from Yale University Press, New Haven, CT.).

Chinch bug

Ricklefs, Economy of Nature, 2000. Figure 13.16

What is chaos in population dynamics?

Signature of chaos = sensitivity to initial conditions

Assessed with:

1. Pattern in N_{t+1} vs. N_t

Random

Logistic

What is chaos in population dynamics?

Signature of chaos = sensitivity to initial conditions

Assessed with:

Pattern in N_{t+1} vs. N_t
Lyapunov exponent (λ)

chaos when $\lambda > 0$

Larch Bud Moth (Large-Scale Sampling)

TABLE 9.1. LBM primary data: summary of results of nonlinear time-series analysis. Quantities: number of data points, n; measure of amplitude (SD of log-transformed densities), S; dominant period, T; the autocorrelation at the dominant period, ACF[T]; estimated process order, p; polynomial degree, q; the coefficient of prediction of the best model, R_{pred}^2 ; and the estimated dominant Lyapunov exponent, Λ_{∞}

Location	n	S	T	ACF[T]	n	а	$R^2_{\rm rest}$	Λ_{m}
					<u> </u>		pieu	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sils	42	1.35	9	0.67**	3	2	0.79	0.05
Engadine	31	1.53	9	0.79**	2	2	0.91	-0.01
Briançonnais	20	1.25	8	0.68**	3	2	0.94	0.45
Goms	21	1.28	9	0.90**	2	2	0.94	0.23
Val Aurina	20	1.08	10	0.63**	2	1	0.83	-0.06
Lungau	19	1.15	9	0.76**	3	1	0.85	-0.01
								<u> </u>

Turchin 2003. Complex Population Dynamics

Lemmings (Small-Scale Sampling)

FIGURE 12.5. Population trajectories of lemmings in Finse and Kilpisjärvi; and voles in Finnmark and Pallasjärvi.

Turchin 2003. Complex Population Dynamics

Lemmings (Small-Scale Sampling)

TABLE 12.5	. Summ	hary of N	LTSM tab	results: lemn le 12.1	nings.	Same	notation	as in
Location	n	S	Т	ACF[T]	p	q	$R_{\rm pred}^2$	Λ
L. lemmus								
Finse	25	1.25	3	0.37*	2	2	0.43	2.01
Kilpisjärvi	25	0.92	_		3	2	0.31	1.01
Finnmark	20	1.06			3	1	0.21	0.08
L. sibericus								
Barrow	18	0.77			2	2	0.35	0.53
Kolyma	12	0.79	4	0.85**	2	1	0.49	0.13
Indirect indi	ces							
Pt. Barrow	21	0.73	3	0.43*	2	1	0.50	0.05
Taimyr	39	0.97	3	0.56**	3	1	0.32	0.34

Data sources: Finse (Framstad et al. 1997); Kilpisjärvi (Turchin et al. 2000, data collected by H. Henttonen); Finnmark (Ekerholm et al. 2000); Barrow (Pitelka 1976); Kolyma (Potapov 1997); Pt. Barrow (Schultz 1969); Taimyr (Wadden Sea Newsletter, 1997).

Series that were detrended: none.

Turchin 2003. Complex Population Dynamics

Humans With Measles (Small-Scale Sampling)

Data courtesy of Bryan Grenfell

Log # pupae or larvae during winter

Example: $x_{t+1} = ax_t(1-x_t)$ a = 3.77695

1	0.5000	
2	0.9442	
3	0.1989	
4	0.6017	
5	0.9051	
6	0.3243	
7	0.8276	
8	0.5388	
9	0.9385	
10	0.2178	
11	0.6435	
12	0.8664	
13	0.4371	
14	0.9293	
15	0.2481	
16	0.7046	
17	0.7861	
18	0.6352	
19	0.8752	
20	0.4125	
21	0.9153	
22	0.2928	
23	0.7821	

Example: $x_{t+1} = ax_t(1-x_t)$ a = 3.77695

1	0.5000
2	0.9442
3	0.1989
4	0.6017
5	0.9051
6	0.3243
7	0.8276
8	0.5388
9	0.9385
10	0.2178
11	0.6435
12	0.8664
13	0.4371
14	0.9293
15	0.2481
16	0.7046
17	0.7861
18	0.6352
19	0.8752
20	0.4125
21	0.9153
22	0.2928
23	0.7821

Example: $x_{t+1} = ax_t(1-x_t)$ a = 3.77695

Average of Five Populations

The 7-Step Approach

Collect 20K values Í of *a* that yield chaos. Collect another 20K 2. values of *a* that do not yield chaos but are in the same range $(3.57 \le a \le 4.00)$ ("control"). Run many simulations (10K) with 3. slightly different initial conditions for each of the 40K values of *a*.

The 7-Step Approach

4. Run the simulations for 5000 time steps to avoid "transient effects."

The 7-Step Approach

4. Run the simulations for 5000 time steps to avoid "transient effects."

Average all 10K sims with the same value of *a* for the last 5000 time steps.
Calculate the Lyapunov exponent (λ) for these average time series.
Plot λ against all values of *a*.

Single Populations: *a* is "chaotic"

λ for populations for time steps 5K -> 10K

а

Single Populations: *a* is not "chaotic"

 λ for populations for time steps 5K -> 10K

What do the average dynamics look like?

а

a = 3.70748 $\lambda = 0.273$

$$a = 3.896664$$

 $\lambda = -0.444$

a

Conclusions (3)

Chaos has been detected occasionally in relatively big species (lemmings, grouse, and measles in humans) and far less convincingly in small-bodies species (e.g., insects).

FIGURE 12.5. Population trajectories of lemmings in Finse and Kilpisjärvi; and voles in Finnmark and Pallasjärvi.

Conclusions (3)

2. If our sampling is large-scale (capturing many small, relatively independent subpopulations, the average of these is occasionally chaotic, but is more likely non-chaotic or "quasi-chaotic."

Conclusions (3)

3. This analysis suggests that the failure to find "holy chaos," especially in rapidly growing insect populations, may be an issue of scale (biologists sampling efforts may be averaging interesting smaller-scale dynamics).

SUNY Geneseo Biomath Group Tony Macula Chris Leary Wendy Pogozelski National Science Foundation

