DNA Microcomputing and the SAT Problem

Sara Shkalim
SUNY Binghamton

What Is DNA Microcomputing and Why Are We Interested In It?

- We are slowly approaching a point where computers will reach their maximum potential:
 - Moore's Law
Advantages of DNA Microcomputers

- **Supply of DNA**
- **DNA Size**
- **Higher Density**
- **More energy efficient**
 - DNA: 10^{19} operations / J
 - Supercomputer: 10^9 ops / J
- **Calculations in parallel**
- **Greater potential speed**
 - DNA: 10^{14} operations per s
 - Supercomputer: 10^{12} ops per s
- **Possibility of computer in living cells**

The Mathematics Behind It

- **The Boolean satisfiability problem (SAT)**
 - Given an expression, is there some assignment of TRUE and FALSE values to the variables that will make the entire expression true?

- p, p' (not p), q, q', r, r' (3 variables)
- All possible combinations, $p\ q\ r'$, $p'\ q\ r$, etc.
- **Clauses:** p OR q
 Satisfies: $p\ q\ r$, $p\ q\ r'$, $p'\ q\ r$, $p\ q'\ r'$, $p'\ q'\ r'$, $p\ q'\ r$
- p' OR q OR r'
 Satisfies: $p'\ q\ r$, $p'\ q\ r'$, $p\ q\ r$, $p\ q\ r'$
- q' OR r'
 Satisfies: $p'\ q\ r'$, $p\ q\ r'$
- p' OR r
 Satisfies: $p'\ q\ r'$
Basic Information To Keep In Mind

- DNA structure
- Restriction enzymes
- Methylases

How Methylation Works

<table>
<thead>
<tr>
<th>Restriction Enzyme</th>
<th>EcoRI Methylase</th>
<th>HindIII Methylase</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'G A A T T H T C 3'</td>
<td>Cut</td>
<td>Cut</td>
</tr>
<tr>
<td>3' T T T C A G A A 5'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5' C T T C A G A A 3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3' G A T T H T C 5'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p (True) → p' (False)
Experimental Setup

- **Bluescript Plasmid DNA**

 - **Circular starting plasmid**
 - If restriction enzyme can cut
 - Then site is True
 - If can’t cut, then site is False

 ![Diagram of restriction enzymes and sites](image)

 - **HindIII**
 - **SmaI**
 - **BssHII**
 - **NotI**
 - **EcoRI**
 - **ClaI**

 p **p’** **q** **q’** **r** **r’**

Scheme for SAT Problem

1. **First** perform pairs of methylation steps to create all logically consistent answers with lots of DNA.
2. **Second** Get rid of those DNAs that don’t satisfy the clauses by cutting.
3. **Third** detect whether there is an answer: Do we have any intact DNA?
4. **Fourth** Determine which variable assignments in the DNA by cutting DNA with various restriction enzymes.
Method

8 sites for REs \(p \ p' \ q \ q' \ r \ r' \ s \ s' \)

Methylase for site \(p \) Methylase for site \(p' \)

\(m^p p' q q' r r' s s' \)

RE \(p \) can’t cut

\(n^p p' q q' r r' s s' \)

Logically consistent at \(p/p' \)

\(p^m p' q q' r r' s s' \)

RE \(p' \) can’t cut

\(n^p p' q q' r r' s s' \)

DNA Methylation partial success

Plasmid- detected at end by transformation of bacteria

So there is a solution!

What is nature of solution?

Cut DNA with each restriction enzyme

Only see product if enzyme did NOT cut

Product=enzyme is false

So \(p \) is False and
\(r \) is False, but
\(q \) is both True and False

We expected answer of FTF

Challenges- restriction enzymes not cut completely?

-also low level of final product
Challenges

- Efficiency
- Difficulty with amount of product obtained
- New methods of detection?

Acknowledgements

- I would like to thank the following people who have given me the opportunity to work on this experiment and have helped me throughout this experience:
 - Dr. Susannah Gal
 - Nancy Monteith
 - Tony Macula
 - Hu Huang
 - Dr. Angela Pagano
 - Tom Head
 - My fellow labmates

- US Army grant
- US Air Force grant
- contract through Tony Macula-SUNY-Geneseo