Efficiency of the Two-Stage Group Testing Algorithm for DNA Library Screening

Vyacheslav Rykov, Vladimir Ufimtsev

OVERVIEW

• Introduction to Group Testing.
• DNA Library Screening.
• Superimposed Coding Theory.
• Two-Stage Group Testing.
• Bound on parameters of DNA library screening experiments.
GROUP TESTING & SCREENING EXPERIMENTS

- Mathematical technique commonly employed in the design of screening experiments.

- Population of \(t \) units,
- Known that at most \(s \) units are defective (positive).
- Defective units have a characteristic that is not present in the non-defective (negative) units.
- For a sample of any size, the presence (positive result) or absence (negative result) of the defective characteristic can be established by exactly one test.
- The defective units of the population need to be found in the least possible amount of tests.

GROUP TESTING APPLICATIONS

Types of problems in which Group Testing is used:

- Pollution tests.
- Leakage tests.
- Flow tests.
- Identifying active users.
- Pattern recognition.
- Screening experimental factors.
GROUP TESTING
ORIGIN

• Idea originated in the spring of 1942. Dorfman and Rosenblatt.
• Blood samples of millions of draftees subjected to identical analyses for detection of syphilis.
• Instead of analyzing each blood sample, the samples should be analyzed in pools (groups).

GROUP TESTING
APPLICATIONS

Problems that can employ Group Testing:

• Pooling of DNA libraries to determine which strands in the DNA library contain a probe (DNA Library Screening).
A DNA library is a large collection of carefully constructed single stranded DNA sequences, that can be used in computations to encode solutions to mathematical problems.

Decoding the solutions is problematic.

One method to decode solutions (determine the positive clones) is to employ group testing (or pooling).

Suppose there are 7 single DNA strands in a library and after some computation we obtain a solution set containing 1 of the 7 DNA strands (1 positive clone).

The goal is to identify in the least amount of tests, which DNA strand is present in the solution set.

Can be done by testing for each strand in the library (7 tests).
• To find exactly which strands constitute the solution set, probes need to be developed that will read the tags simultaneously.

SCREENING EXPERIMENT EXAMPLE

- Can use group testing by augmenting every strand in the DNA library with synthetic ‘tag’ strands constructed from the screening experiment design.

DNA Library Augmented

• To find exactly which strands constitute the solution set, probes need to be developed that will read the tags simultaneously.

SCREENING EXPERIMENT - 1 POSITIVE CLONE

\[
P_1 \quad P_2 \quad P_3 \quad P_4 \quad P_5 \quad P_6 \quad P_7
\]

\[
\begin{bmatrix}
A & A & A & 0 & 0 & A & 0 \\
0 & B & B & 0 & B & 0 & B \\
0 & 0 & C & C & C & C & 0
\end{bmatrix}
\]

A

0

C
Consider the following matrix:

\[
X = \begin{bmatrix}
x_1(1) & x_1(2) & \cdots & x_1(t) \\
x_2(1) & x_2(2) & \cdots & x_2(t) \\
\vdots & \vdots & \ddots & \vdots \\
x_N(1) & x_N(2) & \cdots & x_N(t)
\end{bmatrix}
\]

where \(x_i(j) \in \{0, 1\} \) for all \(i \) and \(j \).

Definition (Code).

The above \(N \times t \) matrix is referred to as a code. The columns of \(X \) are the code packets. Let \(x(i) \) denote the \(i \)-th code packet. Code \(X \) is of size \(t \) and length \(N \).
Definition: Cover

\[x(i) \text{ covers } x(j) \text{ if and only if:} \]

\[x(i) \lor x(j) = x(i) \]

- Example (cover):

\[
\begin{bmatrix}
0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{bmatrix}
\]

Definition: Superimposed Code

A code \(X \) has strength \(s \) if and only if the Boolean sum of any \(s \) codewords does not cover any other codeword in \(X \).

A code of length \(N \), size \(t \), and strength \(s \) is an \((N,s,t)\) superimposed code. The matrix \(X \) is also called \(s\)-disjunct.
The codes which we will implement were introduced by Kautz-Singleton in 1964, and are built from the following code:

\[
\begin{pmatrix}
1 & 1 & \ldots & 1 & 1 & 0 \\
\alpha_1 & \alpha_2 & \ldots & \alpha_{q-2} & 0 & 0 \\
\alpha_1^2 & \alpha_2^2 & \ldots & \alpha_{q-2}^2 & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\alpha_1^{n-k-1} & \alpha_2^{n-k-1} & \ldots & \alpha_{n-2}^{n-k-1} & 0 & 1
\end{pmatrix}
\]

is the parity-check matrix of an MDS \([n, k, n-k+1]\) code which is known as the Reed-Solomon code.

Using \([n, k, n-k+1]\) Reed-Solomon codes where \(n\) is maximal i.e. \(n=q+1\), the family of superimposed codes implemented is obtained.
SUPERIMPOSED CODES
FROM REED-SOLOMON CODES

\[
C = \begin{bmatrix}
 y_1(1) & y_1(2) & \cdots & y_1(t) \\
y_2(1) & y_2(2) & \cdots & y_2(t) \\
y_3(1) & y_3(2) & \cdots & y_3(t) \\
 \vdots & \vdots & \ddots & \vdots \\
y_q+1(1) & y_q+1(2) & \cdots & y_q+1(t)
\end{bmatrix}
\]

\[y_i(j) \in GF(q), \; i = 1, 2, \ldots, q + 1, \; j = 1, 2, \ldots, q^k\]

Each symbol in \(C\) is then replaced by the binary column associated with it. This transformation produces a binary \(q(q+1) \times q^k\) matrix \(X\), which is a superimposed code of size \(t = 2^K\) with the following parameters (strength is calculated by (5) using \(t = q + 1, \lambda = k - 1\)):

\[K = \lfloor k \log_2 q \rfloor, \quad N = q(q+1), \quad s = \frac{q}{k - 1}\]

This binary superimposed code will be labelled as an \((N, s, t)\) code.

DNA LIBRARY SCREENING

• If the solution set contains up to \(s\) strands then:
• Augment every strand in the DNA library with synthetic ‘tag’ strands constructed from the screening experiment design set forth by a superimposed code of strength \(s\).
• Once the probes output the resulting vector (which corresponds to the Boolean sum of the superimposed tags present), the solution strands are then recovered.

• If the number of strands in the solution set (number of positive clones) exceeds the strength of the superimposed code used then other tags (of negative clones) will be covered by the result of the experiment (Boolean sum of positive clone tags).

• Given a value \(p \) we would like to obtain the function for average number of extra tags (clones) covered by the Boolean sum of an arbitrary \(p \)-set of tags from the superimposed code used.

• Studying the asymptotic behavior of such a function, allows us to obtain better bounds on the maximum number of tests required to find \(p \) positive clones among \(t \) clones and it also allows to calculate the maximum number of clones we can find using \(N \) tests among \(t \) clones.
DNA LIBRARY SCREENING
TWO-STAGE GROUP TESTING

- Stage 1: Carry out experiment to determine which clones are covered by the result (Boolean sum).

- Stage 2: Extra negative clones could be covered, thus we must establish which covered clones are indeed positive.

This is done in polynomial time since checking a possible solution to an NP problem is done in P time.

AVERAGE NUMBER OF EXTRA CLONES COVERED

Consider an arbitrary MDS code C with parameters q, k, n of volume $t = q^{k}, k \leq n - 1 \leq q$ and codewords $x(i) = \{x_{1}(i), x_{2}(i), ..., x_{n}(i)\}, i = 1, \ldots, r$. Where q is the number of symbols in the alphabet $GF(q)$, n is the length of the code, $d = n - k + 1$ is the minimal Hamming distance and the minimal weight of the codewords. Denote by $S_{w}(n)$ the number of codewords in C of weight w. Then we have:

$$S_{w}(n) = \binom{n}{w}(q - 1) \sum_{j=0}^{w-d} (-1)^{j} \binom{w-1}{j} q^{w-j}, w = d, n$$

the total number of p-sets of C that do not cover 0:

$$C_{0}(p, n) = \sum_{i=1}^{n} (-1)^{i+1} \binom{n}{i} \binom{S_{i}(p)}{i}$$

Then the average number of codewords that do not belong to but are covered by an arbitrary p-set of C is:

$$L(p) = \frac{\left(\frac{q^{k}-1}{p}\right) - C_{0}(p, n)}{\binom{q^{k}}{p}} q^{k}$$
Theorem \(p = \alpha q, \ k = \left\lfloor \frac{q}{\log_2 q} \right\rfloor \). Then as \(q \to \infty \):

\[
\lim_{q \to \infty} L(\alpha q) \rightarrow \begin{cases}
\infty & \text{if } \alpha > \ln 2 \\
0 & \text{if } \alpha < \ln 2
\end{cases}
\]
• Let: q be a prime power and let $k = \left\lfloor \frac{q}{\log_2 q} \right\rfloor$

• If the number of positive clones $p = \ln 2 \log_2 t$
then for sufficiently large size of library t:

$$N \leq (\log_2 t)^2$$

• If the number of tests $N = (\log_2 t)^2$
then for sufficiently large size of library t:

$$p \leq \ln 2 \log_2 t$$